Comments by Rafael Repullo on

Banks vs. Firms Who Benefits from Credit Guarantees?

Alberto Martin, Sergio Mayordomo and Victoria Vanasco

MadBar Workshop on Banking and Corporate Finance Universitat Pompeu Fabra 7 October 2022

Introduction

• Very interesting topic

 \rightarrow Following widespread use of guarantees during covid-19

- Structure or paper
 - \rightarrow Theoretical model that delivers a set of predictions
 - \rightarrow Test of predictions using the Spanish ICO program
- Focus my discussion on theoretical model

 \rightarrow After brief summary of empirical results

Summary of empirical results

- Result 1
 - → "Riskier firms benefited to a larger extent from loan guarantees"
- Result 2
 - → "Captive borrowers (risky relationship borrowers) received a significantly higher share of guaranteed loans"
- Result 3
 - → "Captive borrowers did not benefit from lower interest rates on guaranteed loans"

Model setup (i)

- Two dates (t = 0, 1)
- Continuum of entrepreneurs and banks
- Entrepreneurs have risky projects that require funding by banks
- Each entrepreneur has a relationship lender

 \rightarrow Outstanding level of debt

- Entrepreneurs' effort is not verifiable
 - \rightarrow Standard moral hazard problem

Model setup (ii)

- Entrepreneurs characterized by
 - \rightarrow Preexisting debt with relationship lender B_0
 - \rightarrow Initial endowment ω
 - \rightarrow Required investment k
 - \rightarrow Productivity (success return) of investment A
 - \rightarrow Liquidation value λ
 - \rightarrow Cost of effort c(p), where p is probability of success

Model setup (iii)

• Entrepreneurs have to fund at t = 0

 \rightarrow Preexisting debt B_0 + Investment k – Endowment ω

$$b_1 = B_0 + k - \omega$$

- Three types of entrepreneurs
 - \rightarrow Solvent: Can fund b_1
 - \rightarrow Captive: Can fund b_1 by renegotiating preexisting debt
 - \rightarrow Insolvent: Cannot fund b_1

Model setup (iv)

- Loan guarantees cover a fraction of principal in case of default
- Assumption: Banks trade guarantees in competitive market
 - \rightarrow Equilibrium price of guarantees ρ

Main comments

- Model is complicated: too many variables at t = 0
 - \rightarrow Preexisting debt with relationship lender B_0
 - \rightarrow Initial endowment ω
 - \rightarrow Required investment k
- Formal analysis is complicated
 - \rightarrow Not easy to get intuition for the results
- Do we need a market for loan guarantees?
 - \rightarrow Such market did not exist in the Spanish case

What I am going to do

- Simple (partial equilibrium) version of the model
 - \rightarrow Negative cash flow -k to be funded at t = 0
 - \rightarrow New debt with face value *D* issued at t = 0
 - \rightarrow Debt with relationship lender *B* to be paid at *t* = 1
 - \rightarrow Productivity (success return) of investment A
 - \rightarrow Liquidation value $\lambda = 0$
 - \rightarrow Interest rate normalized to zero
- No market for loan guarantees

 \rightarrow Look at allocation of guarantees by single bank

Funding alternatives

• Two alternative ways to fund *k*

 \rightarrow Funding with relationship bank

 \rightarrow Funding with other (competitive) bank

• What's the difference?

 \rightarrow Competitive bank maximizes entrepreneur's payoff

 \rightarrow Relationship bank maximizes bank's (total) payoff

Funding with competitive bank

• Optimal contract: (\hat{D}, \hat{p}) such that

$$\hat{p} = \arg \max[p(A - B - \hat{D}) - c(p)]$$

 $\hat{p}\hat{D} = k$

 \rightarrow Solution for quadratic cost function $c(p) = \alpha p^2/2$

$$\hat{D} = \frac{1}{2} \left(A - B - \sqrt{\left(A - B\right)^2 - 4\alpha k} \right)$$

 \rightarrow Feasibility requires

$$(A-B)^2 \ge 4\alpha k \rightarrow A \ge \hat{A} = B + 2\sqrt{\alpha k}$$

Funding with relationship bank

• Optimal contract: $(\overline{D}, \overline{p})$ such that

$$\overline{p}(D) = \arg \max[p(A - B - D) - c(p)]$$
$$\overline{D} = \arg \max[\overline{p}(D)(B + D)]$$

 \rightarrow Solution for quadratic cost function $c(p) = \alpha p^2/2$

$$\overline{D} = \frac{A}{2} - B$$

 \rightarrow Feasibility requires

$$\overline{p}(B+\overline{D}) \ge k \ \to \ A \ge \overline{A} = 2\sqrt{\alpha k}$$

Entrepreneurs' payoffs

• Entrepreneur's payoff with competitive bank

$$\hat{u} = \hat{p}(A - B - \hat{D}) - c(\hat{p}) = \frac{1}{8\alpha} \left(A - B + \sqrt{(A - B)^2 - 4\alpha k} \right)^2$$

• Entrepreneur's payoff with relationship bank

$$\overline{u} = \overline{p}(A - B - \overline{D}) - c(\overline{p}) = \frac{1}{8\alpha}A^2$$

• Funding with competitive bank dominates when

$$\hat{u} \ge \overline{u} \implies A \ge \tilde{A} = B + \sqrt{B^2 + 4\alpha k}$$

 \rightarrow Limit market power of relationship bank

Numerical illustration

- Parameter values
 - \rightarrow Negative cash flow k = 1/3

 \rightarrow Debt with relationship lender B = 1

 \rightarrow Cost function $c(p) = 3p^2/2 \rightarrow \alpha = 3$

• Critical values

 \rightarrow Feasibility of relationship funding $A \ge \overline{A} = 2\sqrt{\alpha k} = 2$

 \rightarrow Feasibility of competitive funding $A \ge \hat{A} = B + 2\sqrt{\alpha k} = 3$

 \rightarrow Indifference point $\tilde{A} = B + \sqrt{B^2 + 4\alpha k} = 3.24$

An illustration: entrepreneurs' utilities

Four types of entrepreneurs

• Insolvent

 \rightarrow Cannot get funding and projects are liquidated

• Really captive

 \rightarrow Can only get funding from relationship bank

• Happily captive

 \rightarrow Prefer to get funding from relationship bank

• Non-captive

 \rightarrow Credible threat to get funding from other banks

An illustration: total debt

Loan guarantees

• A fraction γ of the principal is covered by the guarantee

 \rightarrow Bank gets

$$pD + (1-p)\gamma k$$

- Two alternative ways to fund *k*
 - \rightarrow Funding with relationship bank
 - \rightarrow Funding with other (competitive) bank

Funding with competitive bank

• Optimal contract: (\hat{D}, \hat{p}) such that

$$\hat{p} = \arg \max[p(A - B - \hat{D}) - c(p)]$$
$$\hat{p}\hat{D} + (1 - \hat{p})\gamma k = k$$

 \rightarrow Solution for quadratic cost function $c(p) = \alpha p^2 / 2$

 $\hat{D}(A)$

 \rightarrow Feasibility requires $A \ge \hat{A}$

Funding with relationship bank

• Optimal contract: $(\overline{D}, \overline{p})$ such that

$$\overline{p}(D) = \arg \max[p(A - B - D) - c(p)]$$

 $\overline{D} = \arg \max[\overline{p}(D)(B+D) + (1-\overline{p}(D))\gamma k]$

 \rightarrow Solution for quadratic cost function $c(p) = \alpha p^2 / 2$

$$\overline{D} = \frac{A + \gamma k}{2} - B$$

 \rightarrow Feasibility requires

$$\overline{p}(B+\overline{D}) + (1-\overline{p})\gamma k \ge k \to A \ge \overline{A}$$

An illustration: entrepreneurs' utilities

21

Effect of loan guarantees

- Additional entrepreneurs that would otherwise fail get funding
- Previously captive entrepreneurs are worse off
 - \rightarrow Relationship bank is less eager to provide incentives
 - \rightarrow Since part of the losses are covered by the guarantee
- Non-captive entrepreneurs are better off

 \rightarrow By competition all the surplus goes to the entrepreneur

Allocation of loan guarantees

- Consider a bank with a given amount *K* of guaranteed loans
- How should *K* be allocated among its relationship borrowers?

 \rightarrow How does it get the highest increase in profits?

- Compute gap for different entrepreneurs between
 - \rightarrow Profits with guarantee $\pi_{\rm G}$
 - \rightarrow Profits without guarantee $\pi_{\rm N}$
- Focus on captive entrepreneurs
 - \rightarrow Non-captives get all the surplus from the guarantee

Profits with and without the guarantee

24

Profit maximizing allocation of guarantees

Profit maximizing allocation of guarantees

Profit maximizing allocation of guarantees

• Guarantees are allocated to the marginal (riskiest) entrepreneurs

 \rightarrow Some below and some above the cutoff \overline{A}_{N}

• Increases in the total amount of guaranteed loans *K*

 \rightarrow Expand the range of entrepreneurs with guaranteed loans

• Entrepreneurs above the cutoff \overline{A}_{N} funded with guaranteed loans

 \rightarrow Face higher interest rates

Going back to empirical results

- Result 1
 - → "Riskier firms benefited to a larger extent from loan guarantees"
- Result 2
 - \rightarrow "Captive borrowers (risky relationship borrowers) **OK!** received a significantly higher share of guaranteed loans"

OK!

- Result 3
 - → "Captive borrowers did not benefit from lower interest rates on guaranteed loans"

Welfare analysis of loan guarantees

• Social welfare associated with captive entrepreneurs

$$\overline{w} = \overline{p}A - c(\overline{p}) - k = \frac{3}{8\alpha}A^2 - k$$

• For marginal entrepreneur with $A = \overline{A}_{N} = 2\sqrt{\alpha k}$ we have

$$\overline{w}_{\rm N} = \frac{3}{2}k - k = \frac{1}{2}k > 0$$

→ For $A > \overline{A}_N$ guarantees reduce \overline{p} and reduce welfare → For $A < \overline{A}_N$ guarantees allow funding and increase welfare → Net effect is ambiguous

Concluding remarks

- Very interesting question: Who benefits from credit guarantees?
- Simple version of the model can account for the evidence
- Market for loan guarantees is not needed

 \rightarrow Such market did not exist in the Spanish case

• Other interesting questions that could be addressed

 \rightarrow Effect of deductibles (like in the Chilean case)

 \rightarrow First losses from guaranteed loans allocated to the bank